minimum floor vibration atc design guide 1

Minimum Floor Vibration ATC Design Guide 1: Ensuring Structural Comfort and Safety

minimum floor vibration atc design guide 1 serves as an essential reference for architects, engineers, and construction professionals who seek to create buildings with optimal comfort and safety. In modern construction, controlling floor vibrations is critical—not only to ensure occupant comfort but also to maintain structural integrity and safeguard sensitive equipment. This guide dives into the principles, methodologies, and best practices outlined in the ATC (Applied Technology Council) standards that help minimize floor vibration effectively.

Understanding floor vibration and how it affects building performance can sometimes feel overwhelming. However, with a clear framework like the minimum floor vibration ATC design guide 1, professionals can navigate the complexities of dynamic structural behavior with confidence.

Why Controlling Floor Vibration Matters

Floor vibrations are subtle oscillations caused by dynamic loads such as human movement, machinery operation, or environmental factors like wind and seismic activity. While these vibrations may often go unnoticed, in certain structures or situations, they can lead to discomfort, decreased productivity, or even damage to sensitive instruments.

In office buildings, hospitals, laboratories, and especially in manufacturing plants where precision equipment operates, excessive floor vibration can be problematic. For example, vibrations beyond acceptable thresholds can interfere with the accuracy of microscopes or disrupt workflow in open workspaces, leading to increased stress for occupants.

The minimum floor vibration ATC design guide 1 provides a scientific approach to measuring, predicting, and mitigating these vibrations to ensure the building performs as intended. By adhering to this guide, designers can avoid costly retrofits and improve overall occupant satisfaction.

Core Principles of Minimum Floor Vibration ATC Design Guide 1

The ATC design guide emphasizes several foundational principles for effective floor vibration control. These principles are grounded in structural dynamics, materials science, and human factors engineering.

Dynamic Load Assessment

One of the first steps outlined in the guide is accurately assessing the dynamic loads expected on the floor system. These loads vary depending on the building's function:

- Pedestrian traffic and rhythmic activities (e.g., dancing or jumping)
- Machinery-induced vibrations in industrial settings
- Environmental influences such as wind or minor seismic events

Understanding these loads allows engineers to model how the floor will respond and design accordingly.

Floor System Stiffness and Damping

Stiffness refers to the floor's resistance to deflection under dynamic loads, while damping relates to how quickly vibrations dissipate after being initiated. The guide stresses the importance of optimizing both parameters to reduce floor accelerations.

For example, increasing floor thickness or using materials with higher modulus of elasticity can enhance stiffness. Meanwhile, incorporating damping mechanisms such as viscoelastic materials, tuned mass dampers, or specific structural connections can help absorb and dissipate energy.

Frequency Considerations

The natural frequency of a floor system is a critical factor in vibration design. If the frequency of imposed loads matches the floor's natural frequency, resonance occurs, drastically amplifying vibrations.

The ATC design guide 1 highlights methods to predict natural frequencies and recommends design strategies to avoid resonance with expected dynamic loads. For instance, adjusting beam spacing or adding stiffness can shift the natural frequency away from problematic ranges.

Design Strategies to Minimize Floor Vibrations

Applying the minimum floor vibration ATC design guide 1 involves a combination of analytical modeling, material selection, and construction techniques. Below are some practical strategies recommended to mitigate floor vibrations.

Optimizing Structural Layout

- **Beam and Joist Configuration:** Increasing the depth of beams or reducing spacing between supports enhances stiffness, thereby reducing vibrations.
- **Slab Thickness:** Thicker slabs tend to have higher natural frequencies and lower deflections under dynamic loads.
- **Use of Composite Materials:** Steel-concrete composite floors can offer superior vibration performance compared to conventional slabs.

Incorporating Damping Solutions

- **Viscoelastic Layers:** Installing viscoelastic materials between floor layers absorbs vibrational energy.
- **Tuned Mass Dampers:** These devices counteract floor vibrations by oscillating out of phase with the structure.
- **Isolated Supports:** Utilizing vibration isolators beneath machinery or equipment reduces transmitted vibrations to the floor structure.

Advanced Modeling and Simulation

Modern computational tools enable detailed dynamic analysis, allowing designers to simulate various scenarios and optimize floor designs before construction. The ATC guide encourages leveraging finite element analysis (FEA) and modal testing to predict vibration behavior accurately.

Measurement and Testing Protocols

An integral part of the minimum floor vibration ATC design guide 1 is establishing reliable testing methods to verify that vibration levels meet acceptable criteria.

Vibration Criteria and Standards

The guide references various standards defining acceptable vibration levels based on the use of the space. For example:

- **VC (Vibration Criteria) Curves:** Classification of vibration levels from VC-A (very low) to VC-E (higher vibration) tailored to building types.
- **ISO 10137 and ASTM E756:** Commonly used standards for vibration measurement and human perception thresholds.

Measurement Techniques

- **Accelerometers:** Devices mounted on floor surfaces to capture vibration acceleration

data.

- **Laser Doppler Vibrometry:** A non-contact method to measure velocity and displacement of vibrating floors.
- **Modal Testing: ** Identifies natural frequencies and mode shapes of floor systems.

These tests help validate design assumptions and guide potential remediation efforts if vibration levels are excessive.

Common Challenges and Practical Tips

Designing for minimum floor vibration is not without its hurdles. The ATC guide provides insights to help overcome typical challenges faced during design and construction.

Balancing Cost and Performance

While increasing floor stiffness and adding damping measures improve vibration control, they often come at increased cost. Prioritizing critical areas—such as spaces housing sensitive equipment—can optimize budget allocation.

Accounting for Human Perception

People's sensitivity to vibration varies significantly. The guide suggests tailoring vibration criteria based on occupant expectations and activities. For example, a hospital operating room demands stricter vibration control than a warehouse.

Coordination with Other Building Systems

Floor vibration design must integrate seamlessly with HVAC, electrical, and architectural elements. Early collaboration among disciplines prevents conflicts that could compromise vibration performance.

Future Trends in Floor Vibration Control

As technology advances, new materials and design approaches continue to emerge, pushing the boundaries of floor vibration control beyond traditional methods referenced in minimum floor vibration ATC design guide 1.

Smart Materials and Sensors

Researchers are exploring materials that adapt stiffness or damping properties in response to vibrations. Additionally, embedding sensors within floors can provide real-time monitoring, enabling proactive maintenance.

Parametric and Al-Driven Design

Artificial intelligence and parametric modeling can optimize floor systems based on vast datasets, improving accuracy and reducing design time.

Sustainability Considerations

Integrating vibration control with sustainable building practices ensures that performance enhancements do not come at the expense of environmental impact, aligning with green building certifications.

Navigating the complexities of floor vibration requires a solid understanding of dynamic structural behavior, material properties, and occupant comfort standards. The minimum floor vibration ATC design guide 1 offers a comprehensive framework to approach these challenges methodically. By combining sound engineering principles with innovative design strategies, professionals can create spaces that are not only structurally sound but also comfortable and functional for their intended use. Whether dealing with high-precision laboratories or bustling commercial offices, adhering to these guidelines ensures floors that stand firm against the unseen forces of vibration.

Frequently Asked Questions

What is the purpose of the Minimum Floor Vibration ATC Design Guide 1?

The Minimum Floor Vibration ATC Design Guide 1 provides guidelines and criteria to control and minimize floor vibrations in buildings to ensure occupant comfort and structural performance.

Who developed the Minimum Floor Vibration ATC Design Guide 1?

The guide was developed by the Applied Technology Council (ATC), an organization focused on advancing earthquake engineering and structural safety.

What types of buildings does the Minimum Floor Vibration ATC Design Guide 1 primarily address?

The guide primarily addresses office buildings, residential buildings, laboratories, and other structures where floor vibrations can affect occupant comfort or sensitive equipment.

What are the key factors influencing floor vibration according to the ATC Design Guide 1?

Key factors include floor construction type, natural frequency of the floor system, damping ratio, load characteristics, and occupant sensitivity to vibrations.

How does the Minimum Floor Vibration ATC Design Guide 1 recommend measuring floor vibration performance?

The guide recommends using vibration criteria based on acceleration or velocity limits measured with accelerometers, often expressed as root mean square (RMS) values over specific frequency ranges.

Does the ATC Design Guide 1 provide design recommendations for mitigating floor vibrations?

Yes, it provides design strategies such as increasing floor stiffness, adding damping, optimizing structural layouts, and selecting appropriate materials to reduce vibrations.

How is occupant comfort related to the guidelines in the Minimum Floor Vibration ATC Design Guide 1?

Occupant comfort is a primary concern; the guide establishes vibration thresholds to prevent discomfort or disturbance caused by footfalls, machinery, or other dynamic loads.

Is the Minimum Floor Vibration ATC Design Guide 1 applicable to retrofit projects?

Yes, the guide can be used for both new construction and retrofit projects to assess and improve existing floor vibration performance.

Where can one access the Minimum Floor Vibration ATC Design Guide 1 document?

The guide is available through the Applied Technology Council's official website or through professional engineering organizations that distribute ATC publications.

Additional Resources

Minimum Floor Vibration ATC Design Guide 1: A Technical Review and Analysis

minimum floor vibration atc design guide 1 serves as a critical reference for structural engineers, architects, and designers aiming to mitigate the adverse effects of floor vibrations in buildings. As modern construction trends push for open floor plans, lightweight materials, and increasingly sensitive equipment installations, understanding and applying the principles outlined in this guide becomes essential. This article delves into the core aspects of the ATC (Applied Technology Council) Design Guide 1, emphasizing minimum floor vibration criteria, its practical application, and its significance in contemporary structural design.

Understanding Minimum Floor Vibration in ATC Design Guide 1

The ATC Design Guide 1, primarily developed to address floor vibrations induced by human activity, mechanical equipment, and dynamic loads, outlines methodologies to evaluate and control floor vibrations to maintain occupant comfort and structural integrity. The guide introduces performance criteria for floor systems, focusing on acceleration, velocity, and displacement responses caused by footfalls or machinery.

Floor vibration is a complex phenomenon influenced by structural properties such as mass, stiffness, damping ratios, and natural frequencies. The guide advocates for a holistic approach in designing floors that satisfy both functional and comfort requirements without excessive over-design, which can lead to cost inefficiencies.

Key Performance Metrics and Thresholds

Within the minimum floor vibration ATC design guide 1, several critical vibration metrics are specified:

- Peak Acceleration: Usually measured in milli-g (mg), this parameter is often used to assess human perception of vibration. Levels above 50 mg can cause noticeable discomfort.
- Root Mean Square (RMS) Velocity: Measured in mm/s, RMS velocity correlates well with human sensitivity to vibration and is commonly used in vibration isolation design.
- **Frequency Range**: The guide emphasizes floor vibration control primarily in the 1-80 Hz range, as vibrations within this band are most perceptible and potentially detrimental.

The guide provides threshold values for acceptable vibration levels depending on the

intended use of the space—ranging from residential and office environments to laboratories and sensitive manufacturing facilities.

Design Considerations Presented in ATC Design Guide 1

Designers are encouraged to evaluate floor systems early in the design phase using the parameters set forth in the guide. The ATC recommends a combination of analytical modeling, empirical data, and field measurements to predict floor vibration behavior accurately.

Structural Parameters Affecting Floor Vibrations

Several factors influence the natural frequency and damping characteristics of floors:

- **Floor Thickness and Material**: Thicker floors or those made from dense materials typically have higher natural frequencies, reducing susceptibility to vibration.
- **Span Length**: Longer spans tend to be more flexible and exhibit lower natural frequencies, increasing vibration risks.
- **Support Conditions**: The type of supports—fixed, simply supported, or continuous—affect modal shapes and frequencies.
- **Damping Mechanisms**: Incorporating damping materials or devices can significantly reduce vibration amplitudes.

The guide also highlights the importance of considering occupant activity and equipmentinduced vibrations in the design process, recommending that floor systems be tuned to avoid resonance with common excitation frequencies.

Analytical Methods and Modeling Techniques

ATC Design Guide 1 introduces several analytical approaches for predicting floor vibrations:

- 1. **Beam and Plate Theories**: Simplified one-dimensional and two-dimensional models for initial assessments.
- 2. **Finite Element Analysis (FEA)**: More advanced modeling to capture complex geometries and boundary conditions.

3. **Modal Analysis**: Identifying natural frequencies and mode shapes to understand vibration characteristics.

Engineers are advised to combine these methods with empirical data and on-site testing to validate designs and ensure compliance with vibration criteria.

Comparisons and Contextual Applications

The minimum floor vibration ATC design guide 1 stands out among other guidelines for its focus on practical design recommendations tailored to a variety of building types. Compared to other standards such as ISO 10137 or VC curves (Vibration Criteria), the ATC guide offers a balanced approach between technical rigor and usability.

For example, while ISO 10137 provides comprehensive vibration limits for building serviceability, it is often regarded as conservative for typical office or residential applications. The ATC guide, by contrast, provides tiered criteria reflecting different occupancy sensitivities, helping designers optimize structural performance without incurring unnecessary costs.

Applications in Sensitive Occupancies

In environments where vibration control is paramount—such as hospitals, laboratories, or semiconductor manufacturing plants—ATC Design Guide 1's minimum vibration thresholds become crucial design constraints. Floors must be engineered to reduce vibrations below perceptible limits, often requiring specialized structural systems, vibration isolators, or tuned mass dampers.

Pros and Cons of Implementing ATC's Minimum Vibration Criteria

• Pros:

- Provides clear, evidence-based vibration limits.
- Facilitates early-stage design decisions to avoid costly retrofits.
- Balances occupant comfort with structural economy.
- Widely accepted and referenced in engineering communities.

• Cons:

- May require detailed analysis and testing, increasing upfront design time.
- Thresholds might be challenging to meet in lightweight or long-span floor systems.
- Some designers may find the guide less prescriptive compared to rigid standards.

Advancements and Future Directions in Floor Vibration Mitigation

Since the publication of ATC Design Guide 1, there have been significant developments in materials and vibration control technologies that complement the principles outlined in the guide. Innovations such as high-damping composite materials, active vibration control systems, and improved modeling software tools enable more efficient floor designs with minimal vibration.

Further research is focusing on integrating sensor networks for real-time vibration monitoring and adaptive control, which could revolutionize how floor vibration is managed in smart buildings. The ATC design framework remains a foundational reference as these technologies evolve.

The minimum floor vibration ATC design guide 1 continues to be an indispensable resource for structural engineers seeking to balance human comfort, building functionality, and economic efficiency. Its comprehensive approach to defining vibration criteria and design methodologies equips professionals with the tools necessary to address the challenges of modern construction. As buildings become more complex and occupant expectations rise, adherence to such guidelines ensures that floor vibrations remain within tolerable limits, preserving both the structural performance and the user experience.

Minimum Floor Vibration Atc Design Guide 1

Find other PDF articles:

https://spanish.centerforautism.com/archive-th-120/pdf?trackid=uxt17-7614&title=poems-and-prayers-for-the-very-young.pdf

minimum floor vibration atc design guide 1: Cold-Formed Steel Design Wei-Wen Yu, Roger A. LaBoube, Helen Chen, 2019-10-04 Provides the latest AISI North American specifications for cold-formed steel design Hailed by professionals around the world as the definitive text on the design of cold-formed steel, this book provides descriptions of the construction and structural behavior of cold-formed steel members and connections from both theoretical and experimental points of view. Updated to reflect the 2016 AISI North American specification and 2015 North American framing standards, this all-new fifth edition offers readers a better understanding of the analysis and design of the thin-walled, cold-formed steel structures that have been widely used in building construction and other areas in recent years. Cold-Formed Steel Design, 5th Edition has been revised and reorganized to incorporate the Direct Strength Method. It discusses the reasons and justification for the various design provisions of the North American specification and framing design standards. It provides chapter coverage of: the types of steels and their most important mechanical properties; the fundamentals of buckling modes; commonly used terms; the design of flexural members, compression members and closed cylindrical tubes, and of beam-columns using ASD, LRFD, and LSD methods; shear diaphragms and shell roof structures; standard corrugated sheets; and more. Updated to the 2016 North American (AISI S100) design specification and 2015 North American (AISI S240) design standard Offers thorough coverage of ASD, LRFD, LSD, and DSM design methods Integrates DSM in the main body of design provisions Features a new section on Power-Actuated Fastener (PAF) Connections Provides new examples and explanations of design provisions Cold-Formed Steel Design, 5th Edition is not only instructive for students, but can serve as a major source of reference for structural engineers, researchers, architects, and construction managers.

minimum floor vibration atc design guide 1: Structures and Architecture Paulo J. Cruz, 2016-10-14 Although the disciplines of architecture and structural engineering have both experienced their own historical development, their interaction has resulted in many fascinating and delightful structures. To take this interaction to a higher level, there is a need to stimulate the inventive and creative design of architectural structures and to persuade architects and structural engineers to further collaborate in this process, exploiting together new concepts, applications and challenges. This set of book of abstracts and full paper searchable CD-ROM presents selected papers presented at the 3rd International Conference on Structures and Architecture Conference (ICSA2016), organized by the School of Architecture of the University of Minho, Guimarães, Portugal (July 2016), to promote the synergy in the collaboration between the disciplines of architecture and structural engineering.

minimum floor vibration atc design guide 1: Guidelines for Using Strong-motion Data and ShakeMaps in Postearthquake Response Applied Technology Council, 2005

minimum floor vibration atc design guide 1: Structures and Architecture Paulo J. da Sousa Cruz, 2016-10-14 Although the disciplines of architecture and structural engineering have both experienced their own historical development, their interaction has resulted in many fascinating and delightful structures. To take this interaction to a higher level, there is a need to stimulate the inventive and creative design of architectural structures and to persuade architects and structural engineers to further collaborate in this process, exploiting together new concepts, applications and challenges. This set of book of abstracts and full paper searchable CD-ROM presents selected papers presented at the 3rd International Conference on Structures and Architecture Conference (ICSA2016), organized by the School of Architecture of the University of Minho, Guimarães, Portugal (July 2016), to promote the synergy in the collaboration between the disciplines of architecture and structural engineering. The set addresses all major aspects of structures and architecture, including building envelopes, comprehension of complex forms, computer and experimental methods, concrete and masonry structures, educating architects and structural engineers, emerging technologies, glass structures, innovative architectural and structural design, lightweight and membrane structures, special structures, steel and composite structures, the borderline between architecture and structural engineering, the history of the

relationship between architects and structural engineers, the tectonics of architectural solutions, the use of new materials, timber structures and more. The contributions on creative and scientific aspects of the conception and construction of structures, on advanced technologies and on complex architectural and structural applications represent a fine blend of scientific, technical and practical novelties in both fields. This set is intended for both researchers and practitioners, including architects, structural and construction engineers, builders and building consultants, constructors, material suppliers and product manufacturers, and other experts and professionals involved in the design and realization of architectural, structural and infrastructural projects.

minimum floor vibration atc design guide 1: ATC Design Guide 1 Applied Technology Council, 1991

minimum floor vibration atc design guide 1: Structural Wood Design Abi Aghayere, Jason Vigil, 2017-04-28 This text provides a concise and practical guide to timber design, using both the Allowable Stress Design and the Load and Resistance Factor Design methods. It suits students in civil, structural, and construction engineering programs as well as engineering technology and architecture programs, and also serves as a valuable resource for the practicing engineer. The examples based on real-world design problems reflect a holistic view of the design process that better equip the reader for timber design in practice. This new edition now includes the LRFD method with some design examples using LRFD for joists, girders and axially load members. is based on the 2015 NDS and 2015 IBC model code, includes a more in-depth discussion of framing and framing systems commonly used in practice, such as, metal plate connected trusses, rafter and collar tie framing, and pre-engineered framing, includes sample drawings, drawing notes and specifications that might typically be used in practice. includes updated floor joist span charts that are more practical and are easy to use. includes a chapter on practical considerations covering topics like flitch beams, wood poles used for footings, reinforcement of existing structures, and historical data on wood properties. includes a section on long span and high rise wood structures includes an enhanced student design project

minimum floor vibration atc design guide 1: Minimizing Floor Vibration David E. Allen, Applied Technology Council, 1999

minimum floor vibration atc design guide 1: Regional Industrial Buying Guide, 2001 minimum floor vibration atc design guide 1: Earthquake Engineering Research at Berkeley, 1992, 1992

minimum floor vibration atc design guide 1: National Clearinghouse for Loma Prieta Earthquake Information Catalog , 1991

 $\textbf{minimum floor vibration atc design guide 1: Safety Science Abstracts Journal} \ , \ 1979$

minimum floor vibration atc design guide 1: Highway Research Abstracts, 1991

minimum floor vibration atc design guide 1: $\underline{\text{The Engineer}}$, 1879

minimum floor vibration atc design guide 1: Report, 1992

minimum floor vibration atc design guide 1: Aeronautical Engineering, 1990 A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA).

minimum floor vibration atc design guide 1: Jane's All the World's Aircraft , 2006 minimum floor vibration atc design guide 1: Government Reports Annual Index , 1987

Related to minimum floor vibration atc design guide 1

News & E-Mail bei t-online | Politik, Sport, Unterhaltung & Ratgeber Aktuelle News aus Politik, Sport, Unterhaltung, Wirtschaft & Finanzen | Ratgeber Leben, Gesundheit und Heim & Garten | E-Mail und Shopping bei t-online

Politik - Aktuelle News, Informationen und Videos zu Politik, Panorama und Wetter aus Deutschland, Europa und der Welt von t-online.de Nachrichten

Alle aktuellen Nachrichten von Bleiben Sie mit unseren aktuellen Nachrichten immer auf dem

Laufenden. Hier finden Sie alle unsere News aus allen Bereichen, wie etwa Politik, Sport, Regionales und Unterhaltung

Alle aktuellen Nachrichten von - Politik Bleiben Sie mit unseren aktuellen Nachrichten immer auf dem Laufenden. Hier finden Sie alle unsere News aus dem Bereich Politik

Aktuelle News, Hintergründe und Videos aus Deutschland - t Alle aktuellen News aus Deutschland beim Nachrichtenportal von t-online.de im Überblick. Nachrichten und Informationen zu allen Themen aus Deutschland

Das E-Mail-Center im Überblick - Das Postfach für Ihre T-Online-Mail behalten Sie über die kleine Box mit dem T-Online E-Mail Login am oberen rechten Bildschirm von www.t-online.de stets im Blick

Freemail @: Kostenloses E-Mail-Konto einrichten Eine kostenlose Wunsch-E-Mail-Adresse @tonline können Sie in wenigen Schritten einrichten und sofort nutzen – auch wenn Sie keinen Telekom Internetanschluss haben

Das E-Mail Center im Web - für E-Mail @ der Telekom Einfache, sichere und komfortable E-Mail-Kommunikation im E-Mail Center der Telekom für Ihr E-Mail-Postfach @t-online.de

Moskau attackiert den deutschen Botschafter | Ukraine-News Sie können diesen (und damit auch alle weiteren X -Inhalte auf t-online.de) mit einem Klick anzeigen lassen und auch wieder deaktivieren

Sport-Nachrichten aktuell: Alle Sport-News auf einen Blick - t t-online.de Sport – aktuelle Sportnachrichten und Hintergründe aus der Sport-Welt: News zu Fußball, Formel 1, Boxen, Tennis, Handball, Basketball und Biathlon

Michał Żurawski (aktor) - Wikipedia, wolna encyklopedia Michał Żurawski (ur. 2 lipca 1979 w Zabrzu) - polski aktor teatralny, filmowy, telewizyjny, radiowy i dubbingowy. Brat aktora Piotra Żurawskiego

Michał Żurawski: dzieci, żona, Król, wiek, wzrost, brat, Instagram Michał Żurawski: dzieci, żona, Król, wiek, wzrost, brat, Instagram - te frazy na temat aktora wpisujecie w Google najczęściej. Co warto wiedzieć o Michale Żurawskim?

Piotr Żurawski (I) - Filmweb Piotr Żurawski - Piotr Żurawski jest polskim aktorem teatralnym, filmowym i telewizyjnym, urodzonym 14 października 1985 roku w Bytomiu. Jest znany przede wszystkim z ról w takich

Michał Żurawski - Agencja ZA 2023 STRZĘPY Batumi (Batumi International Art House Film Festival) Nagroda dla najlepszego aktora 2022 Nagroda za rolę w słuchowisku "Solaris" na 21. Festiwalu Teatru Polskiego Radia i

Michał Żurawski - Ale gdy pozują, ich miny i pozy są niemal identyczne. michał żurawski rodzeństwo "Druga szansa". Najbardziej lubiany bohater zostanie uśmiercony! Kożuchowska zdradza szczegóły,

Michał Żurawski - spektakle - bilety do teatru - filmy - zdjęcia Michał ŻurawskiCeniony aktor teatralny, filmowy, telewizyjny oraz dubbingowy. Absolwent Wydziału Aktorskiego Akademii Teatralnej im. Aleksandra Zelwerowicza w Warszawie, którą

- **Michał Żurawski** Obsada aktorska (Karl von Stein Kawetzky, agent Reri; w odcinku 12 pada inne imię postaci: Dietrich)

Michał Żurawski - Filmweb Michał Żurawski - Michał Żurawski jest polskim aktorem filmowym i serialowym. Widzowie znają go dzięki rolom w takich produkcjach jak "Kruk", "Miasto 44

Żurawski - Wikipedia, wolna encyklopedia Jurij Żurawski (ur. 1974) - ukraiński bobsleista, olimpijczyk Nicolae Juravschi, Nikołaj Żurawski (ur. 1964) - kajakarz, kanadyjkarz, reprezentant ZSRR, Rumunii i Mołdawii Roman Żurawski

Michał Żurawski - Filmografia - Filmweb Michał Żurawski - Michał Żurawski jest polskim aktorem filmowym i serialowym. Widzowie znają go dzięki rolom w takich produkcjach jak "Kruk", "Miasto 44

Back to Home: https://spanish.centerforautism.com