uw biology acceptance rate

Understanding the UW Biology Acceptance Rate: What You Need to Know

uw biology acceptance rate is a topic that often comes up among prospective students aiming to join one of the most prestigious biology programs in the country. Whether you're a high school senior dreaming of studying genetics or a transfer student interested in marine biology, understanding the acceptance rate can give you a clearer picture of your chances and how competitive the program really is. But beyond just numbers, there's a lot to unpack about what it means to get accepted into the University of Washington's biology department and how you can position yourself as a strong candidate.

The Significance of UW Biology Acceptance Rate

When people talk about the UW biology acceptance rate, they are essentially referring to the percentage of applicants who successfully gain admission into the biology major at the University of Washington. This figure is important because it reflects the program's selectivity and prestige. A lower acceptance rate usually indicates a highly competitive program with rigorous admission standards.

Why Does Acceptance Rate Matter?

If you're applying to UW's biology program, knowing the acceptance rate helps you:

- Gauge the level of competition you'll face.
- Understand the standards and expectations of the admissions committee.
- Prepare a more tailored and strategic application.

It's important to remember that acceptance rate is just one piece of the puzzle. Admissions decisions also weigh heavily on GPA, standardized test scores (if applicable), extracurricular activities, research experience, and personal statements.

Current Trends in UW Biology Acceptance Rate

As of recent years, the UW biology acceptance rate has hovered around 20-25%, though these numbers can fluctuate slightly depending on the applicant pool and institutional priorities. This rate means that roughly one in four to five applicants are admitted into the program, highlighting its competitive nature.

Factors Influencing the Acceptance Rate

Several factors impact the acceptance rate for the biology program at UW:

- **Number of Applicants:** Biology is a popular major, so thousands apply each year, increasing competition.
- **Program Capacity:** The department can only accommodate a certain number of students due to faculty resources, laboratory space, and class sizes.
- **Academic Rigor:** The department looks for students with strong academic backgrounds, especially in sciences and math.
- **University-wide Admission Policies:** Sometimes changes in overall university enrollment goals affect the number of students admitted into specific programs.

What Makes a Strong Applicant to UW Biology?

If you're wondering how to improve your chances beyond just knowing the acceptance rate, focusing on your overall profile is key. Here's what the admissions committee typically looks for:

Academic Excellence

- High GPA, particularly in science courses like biology, chemistry, and physics.
- Strong performance in advanced placement or International Baccalaureate (IB) biology and math classes.
- Solid standardized test scores (though many schools have become testoptional in recent years).

Relevant Experience and Passion

- Participation in science clubs, biology research projects, internships, or volunteer work in healthcare or environmental organizations.
- Demonstrated enthusiasm for biology through personal statements or essays.
- Letters of recommendation that highlight your commitment and aptitude for scientific inquiry.

Holistic Attributes

- Leadership skills and teamwork ability.
- Problem-solving and critical thinking demonstrated through extracurricular activities.

- Diversity of experiences that enrich the campus community.

How to Navigate the Application Process for UW Biology

Understanding the nuances of the application can make a big difference. Here are some practical tips:

Start Early and Prepare Thoroughly

Begin gathering transcripts, recommendation letters, and drafting your personal statement well ahead of deadlines. This allows time for revisions and feedback.

Highlight Your Unique Strengths

Admissions officers read thousands of applications. Stand out by telling a compelling story about why biology excites you and how you've pursued that interest.

Showcase Research and Volunteer Work

If you have lab experience, fieldwork, or any biology-related volunteering, be sure to include these details. It demonstrates real-world engagement beyond classroom learning.

Consider Alternative Pathways

If you don't get accepted directly into the biology major, UW often allows students to start as undeclared or in related fields like environmental science, with the option to transfer into biology later. Maintaining a strong academic record in your first year can improve your chances of switching majors.

Comparing UW Biology Acceptance Rate with Other Schools

When evaluating UW biology acceptance rate, it's helpful to consider how it

stacks up against other universities:

- Some top-tier biology programs at Ivy League schools have acceptance rates as low as 5-10%.
- Large public universities may have acceptance rates similar to or higher than UW's.
- UW strikes a balance between accessibility and competitiveness, especially given its strong research opportunities and resources.

Why Choose UW Biology Despite the Competition?

- Access to world-class faculty and cutting-edge research facilities.
- Opportunities for undergraduate research in diverse fields like genomics, ecology, and neurobiology.
- Strong connections with the biotech industry and healthcare institutions in the Seattle area.
- A vibrant campus community with resources to support science students.

Final Thoughts on UW Biology Acceptance Rate and Your Application Strategy

While the UW biology acceptance rate provides a snapshot of how competitive the program is, it doesn't tell the whole story. Admissions decisions are multifaceted, considering both quantitative metrics and qualitative factors like your passion and potential. Focusing on building a strong academic foundation, gaining relevant experience, and crafting a thoughtful application can significantly improve your chances of admission.

Remember, getting into a program like UW biology is not just about numbers—it's about demonstrating that you're ready to contribute meaningfully to a challenging and dynamic field. If biology is your passion, let that shine through in every part of your application, and you'll be well on your way to joining one of the nation's top biology programs.

Frequently Asked Questions

What is the acceptance rate for the University of Washington Biology program?

The acceptance rate for the University of Washington Biology program varies by year, but it generally ranges between 20% to 30%, reflecting a competitive admissions process.

How competitive is admission to the UW Biology major?

Admission to the UW Biology major is quite competitive due to high demand and strong applicants; students typically need strong academic records, particularly in science and math courses.

Does the University of Washington have a separate acceptance rate for the Biology major versus general admission?

Yes, the UW Biology major often has a more competitive acceptance rate compared to general university admission, as impacted majors have limited spots and higher standards.

What factors influence acceptance into the UW Biology program?

Factors influencing acceptance include high school GPA, standardized test scores (if submitted), rigor of coursework, extracurricular activities related to biology, personal statements, and letters of recommendation.

Has the acceptance rate for UW Biology changed in recent years?

The acceptance rate for UW Biology has generally remained competitive, with slight fluctuations due to changes in application volume and university enrollment targets.

Are there any alternative pathways to get into the UW Biology program if not accepted initially?

Yes, students can consider starting in related majors or general studies and then applying to transfer into the Biology major after demonstrating strong academic performance.

How does UW Biology acceptance rate compare to other STEM majors at the University of Washington?

The Biology acceptance rate is competitive but generally similar to or slightly more selective than some other popular STEM majors due to high demand and impacted status.

What GPA is generally required for strong

consideration into the UW Biology program?

A competitive GPA for UW Biology applicants is typically 3.7 or higher on a 4.0 scale, especially in science and math courses.

Where can I find the most up-to-date acceptance rate information for UW Biology?

The most current acceptance rate information can be found on the University of Washington admissions website or by contacting the College of Arts and Sciences advising office directly.

Additional Resources

UW Biology Acceptance Rate: An In-Depth Analysis of Admissions Competitiveness and Program Insights

uw biology acceptance rate is a critical metric for prospective students aiming to join one of the University of Washington's most esteemed programs. As one of the leading public research universities in the United States, the University of Washington (UW) offers a robust biology program attracting thousands of applicants annually. Understanding the acceptance rate, alongside other admissions factors, is essential for candidates seeking to gauge their chances and prepare a competitive application.

Understanding the UW Biology Acceptance Rate

The UW biology acceptance rate refers to the proportion of applicants admitted into the biology major relative to the total number of applicants. This figure is a key indicator of the program's selectivity and competitiveness. While the University of Washington's overall undergraduate acceptance rate hovers around 52%, the biology program, particularly due to its popularity and academic rigor, tends to have a more selective admission process.

For the 2023-2024 academic cycle, the UW biology acceptance rate is estimated to be approximately 30-35%. This lower acceptance rate compared to the general university admission illustrates the biology department's status as a high-demand program. The program's appeal lies in its comprehensive curriculum, cutting-edge research opportunities, and strong connections to medical and environmental science fields.

Factors Influencing UW Biology Acceptance Rate

Several factors contribute to the acceptance rate within the biology program

- Applicant Volume: The biology major consistently attracts a large pool of highly qualified candidates from across the nation and internationally, increasing competition.
- Academic Performance: Strong high school GPA, particularly in science and math courses, is fundamental. UW biology applicants typically present above-average academic records.
- **Standardized Test Scores**: Although UW has adopted test-optional policies recently, high SAT or ACT scores can still enhance an application.
- Extracurricular Involvement: Demonstrated passion for biology through research projects, internships, volunteer work, or science clubs can distinguish applicants.
- Holistic Admissions Review: UW evaluates personal statements, recommendation letters, and unique experiences, which can tip the scales when academic metrics are similar.

Comparative Acceptance Rates: UW Biology Versus Other Institutions

When examining the UW biology acceptance rate, it is useful to contextualize it with acceptance rates at peer institutions. For example:

- University of California, Berkeley: The biology major here has an acceptance rate close to 25%, reflecting its highly competitive nature.
- University of Michigan: With a biology acceptance rate around 30%, UMich shares similarities with UW in terms of selectivity.
- University of Florida: The biology program at UF tends to have a higher acceptance rate, near 45%, making it somewhat less competitive.

This comparison highlights that while UW biology is selective, it remains within a competitive but attainable range for well-prepared applicants.

Key Features of the UW Biology Program That

Influence Demand

The biology program's rigorous curriculum and research opportunities significantly impact its acceptance rate. Among the key features are:

- 1. **Research Integration:** UW encourages undergraduates to engage in research early, often collaborating with faculty on groundbreaking studies.
- 2. **Interdisciplinary Approach:** The program integrates molecular biology, ecology, genetics, and bioinformatics, appealing to diverse student interests.
- 3. Career Pathways: Many students pursue pre-med tracks or graduate studies, knowing UW's strong reputation aids in competitive professional advancement.
- 4. **State-of-the-Art Facilities:** Access to advanced laboratories and field stations enhances practical learning experiences.

These program characteristics increase its attractiveness, subsequently driving up the number of applicants and influencing the acceptance rate.

Strategies to Improve Chances of Admission into UW Biology

Given the competitive nature of UW biology admissions, applicants should consider several strategies to bolster their applications:

Academic Excellence and Preparation

Candidates must excel in science courses such as biology, chemistry, and physics, as well as mathematics. Taking Advanced Placement (AP) or International Baccalaureate (IB) courses can demonstrate readiness for challenging university-level coursework.

Showcase Relevant Experience

Engagement in biology-related extracurriculars—whether through internships at hospitals, research labs, or environmental organizations—can give applicants a significant advantage. Volunteering or participating in science fairs also signals genuine interest.

Craft a Compelling Personal Statement

UW's holistic review process places weight on personal essays. Applicants should articulate their passion for biology, future career aspirations, and unique experiences that shape their academic journey.

Seek Strong Recommendations

Letters from science teachers or mentors who can vouch for the applicant's capabilities and dedication bolster credibility during the evaluation process.

The Impact of UW Biology Acceptance Rate on Prospective Students

The relatively selective acceptance rate can have several implications for prospective students. On one hand, it ensures that admitted students are highly motivated and academically prepared, fostering a rigorous and intellectually stimulating environment. On the other hand, the competitive nature may discourage some applicants who feel their credentials do not meet the high standards.

Moreover, students admitted to UW biology benefit from the university's extensive resources, including access to cutting-edge research, internships in Seattle's vibrant biotech industry, and opportunities for interdisciplinary collaboration. These advantages often justify the challenge of gaining admission.

Alternative Pathways within UW for Aspiring Biologists

For students unable to secure direct admission to the biology major, UW offers alternative pathways:

- Starting Undeclared: Many students begin as undeclared majors, completing prerequisite courses before applying to the biology program during their sophomore year.
- Related Majors: Fields such as environmental science, bioengineering, or molecular biology provide overlapping curricula and research opportunities.

• Transfer Admissions: Students may also consider transferring from community colleges or other universities after demonstrating strong academic performance.

These routes provide flexibility and maintain access to the university's renowned biology education.

Conclusion

The UW biology acceptance rate reflects a balance between the program's prestige and its commitment to maintaining high academic standards. While competitive, the program remains accessible to students who combine strong academic credentials with relevant experiences and a clear passion for the biological sciences. Navigating this admissions landscape requires strategic preparation and an understanding of the factors influencing acceptance. For many, the investment pays dividends through unparalleled educational and research opportunities in one of the nation's leading biology programs.

Uw Biology Acceptance Rate

Find other PDF articles:

https://spanish.centerforautism.com/archive-th-107/pdf? dataid = ekK58-4448&title = what-is-samoan-language.pdf

uw biology acceptance rate: Departments of Labor, Health and Human Services, Education, and Related Agencies Appropriations for 1999 United States. Congress. House. Committee on Appropriations. Subcommittee on the Departments of Labor, Health and Human Services, Education, and Related Agencies, 1998

uw biology acceptance rate: Oceanography and Marine Biology R.N. Hughes, D. J. Hughes, I. P. Smith, A.C. Dale, 2016-11-25 Ever-increasing interest in oceanography and marine biology and their relevance to global environmental issues create a demand for authoritative reviews summarizing the results of recent research. Oceanography and Marine Biology: An Annual Review has catered to this demand since its founding by the late Harold Barnes more than 50 years ago. Its objectives are to consider, annually, the basic areas of marine research, returning to them when appropriate in future volumes; to deal with subjects of special and topical importance; and to add new subjects as they arise. The favourable reception and complimentary reviews accorded to all the volumes shows that the series is fulfilling a very real need. Volume 54 follows closely the objectives and style of the earlier volumes, continuing to regard the marine sciences—with all their various aspects—as a unity. Physical, chemical, and biological aspects of marine science are dealt with by experts actively engaged in these fields. The series is an essential reference text for researchers and students in all fields of marine science and related subjects, and it finds a place in libraries of universities, marine laboratories, research institutes and government departments. It is consistently

among the highest ranking series in terms of impact factor in the marine biology category of the citation indices compiled by the Institute for Scientific Information/Web of Science.

uw biology acceptance rate: *Plant Mitochondria* Nicolas L. Taylor, 2019-02-19 This book is a printed edition of the Special Issue Plant Mitochondria that was published in IJMS

uw biology acceptance rate: Wisconsin Library Service Record Wisconsin. Division for Library Services, 1981

uw biology acceptance rate: <u>U.S. Environmental Protection Agency Library System Book</u> <u>Catalog</u> United States. Environmental Protection Agency. Library Systems Branch, 1975

uw biology acceptance rate: An Audit of State of Wisconsin Wisconsin. Legislature. Legislative Audit Bureau, 2000

uw biology acceptance rate: *Advances in Biopreservation* John G. Baust, John M. Baust, 2006-08-15 Moving rapidly from science fiction to science fact, cryopreservation is an integral part of many research, development, and production processes in industry and academia. The preservation sciences have emerged as an interdisciplinary platform that incorporates the fundamentals of cell and molecular biology, and bioengineering, with the classic met

uw biology acceptance rate: The Chlamydomonas Sourcebook Ursula Goodenough, 2023-02-15 The Chlamydomonas Sourcebook, 3rd Edition Introduction to Chlamydomonas and Its Laboratory Use (Volume 1) The gold-standard reference covering the basic biology of the Chlamydomonas alga and techniques for its laboratory analysis Originally published as the standalone Chlamydomonas Sourcebook, then expanded as the first volume in a three-part comprehensive gold-standard reference, The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and Its Laboratory Use has been fully revised and updated to include a wealth of new resources for the Chlamydomonas community. Early chapters cover current understandings of its taxonomy, ultrastructure, cell and life cycles, and nuclear and organelle genomes, followed by technique-oriented chapters covering such topics as cell culture, mutagenesis, genetic analysis, construction of mutant libraries, and protein localization using immunofluorescence. This volume presents the latest in research and best practices, making it a must-have resource for researchers and students working in plant science and photosynthesis, fertility, mammalian vision, and biochemistry; crop scientists; plant physiologists; and plant, molecular, and human disease biologists. - Remains the only complete reference to provide both the historical background and the most up-to-date information and applications on Chlamydomonas - Includes best practices for applications in research, including methods for culture, genetic analysis, genomic and transcriptomic analysis, and mutant screening - Helps researchers solve common laboratory problems, provides details on the properties of particular strains, and offers a comprehensive survey of molecular approaches - Provides a broad perspective for studies in cell and molecular biology, genetics, plant physiology, and related fields

uw biology acceptance rate: Introduction to Proteomics Daniel C. Liebler, 2001-12-04 Daniel C. Liebler masterfully introduces the science of proteomics by spelling out the basics of how one analyzes proteins and proteomes, and just how these approaches are then employed to investigate their roles in living systems. He explains the key concepts of proteomics, how the analytical instrumentation works, what data mining and other software tools do, and how these tools can be integrated to study proteomes. Also discussed are how protein and peptide separation techniques are applied in proteomics, how mass spectrometry is used to identify proteins, and how data analysis software enables protein identification and the mapping of modifications. In addition, there are proteomic approaches for analyzing differential protein expression, characterizing proteomic diversity, and dissecting protein-protein interactions and networks.

uw biology acceptance rate: Undergraduate Mathematics for the Life Sciences Glenn Ledder, Jenna P. Carpenter, Timothy D. Comar, 2013 There is a gap between the extensive mathematics background that is beneficial to biologists and the minimal mathematics background biology students acquire in their courses. The result is an undergraduate education in biology with very little quantitative content. New mathematics courses must be devised with the needs of biology

students in mind. In this volume, authors from a variety of institutions address some of the problems involved in reforming mathematics curricula for biology students. The problems are sorted into three themes: Models, Processes, and Directions. It is difficult for mathematicians to generate curriculum ideas for the training of biologists so a number of the curriculum models that have been introduced at various institutions comprise the Models section. Processes deals with taking that great course and making sure it is institutionalized in both the biology department (as a requirement) and in the mathematics department (as a course that will live on even if the creator of the course is no longer on the faculty). Directions looks to the future, with each paper laying out a case for pedagogical developments that the authors would like to see.

uw biology acceptance rate: The Biology of Animal Viruses Frank J. Fenner, B. R. McAuslan, C. A. Mims, 2013-09-17 The Biology of Animal Viruses, Second Edition deals with animal viruses focusing on molecular biology and tumor virology. The book reviews the nature, chemical composition, structure, and classification of animal viruses. The text also describes the methods of isolating animal viruses, how these are grown in the laboratory, assayed, purified, and used in biochemical experiments. The book also describes the structure and chemistry of many known viruses such as the papovaviridae, herpes virus, poxvirus, coronavirus, or the Bunyamwera supergroup. The book then explains the structure and function of the animal cell including the cytoplasmic organelles, the nucleus, inhibitors of cell function, and viral multiplication. Other papers discuss in detail the multiplication of the DNA and RNA viruses, whose mechanisms of multiplication differ from those of other viruses. Other papers discuss the known prevention and treatment methods of viral diseases, as well as the epidemiology and evolution of viral diseases resulting from human's disturbance of the biosphere and from medical and experimental innovations. The text can prove useful for immunologists, veterinarians, virologists, molecular researchers, students, and academicians in the field of cellular microbiology and virology.

uw biology acceptance rate: *University of Waterloo Biology Series* University of Waterloo. Department of Biology, 2002

uw biology acceptance rate: Project Directory ... ,

 $\begin{tabular}{ll} \textbf{uw biology acceptance rate: Advances in Microbial Physiology} \ , \ 1985-12-23 \ Advances in Microbial Physiology \\ \end{tabular}$

uw biology acceptance rate: Life Science Careers Jasna Markovac, Kim E. Barrett, Howard Garrison, 2024-05-09 This book is written for the many Life Science PhD students who may pursue careers outside of academic research. Even though the biggest portion of students will ultimately pursue other paths, university education trains them mostly for the academic track. Students often miss information, resources, contacts, or opportunities to explore other options. In response, the editors assembled a diverse group of authors from all fields related to Life Science research. The chapters offer a peek behind the curtain of each industry and offer guidance on how to move towards such roles. Through a high level of uniformity, students will get a plethora of career stories, each providing job opportunities, job descriptions, resources, and useful contact information. The purpose of this volume is to illustrate the many excellent opportunities that are available to life science PhDs, which will still allow them to make significant contributions to science.

uw biology acceptance rate: Park Science, 2012

uw biology acceptance rate: Hymenoptera: Evolution, Biodiversity and Biological Control Andrew Austin, Mark Dowton, 2000-10-26 The Hymenoptera is one of the largest orders of terrestrial arthropods and comprises the sawflies, wasps, ants, bees and parasitic wasps. Hymenoptera: Evolution, Biodiversity and Biological Control examines the current state of all major areas of research for this important group of insects, including systematics, biological control, behaviour, ecology, and physiological interactions between parasitoids and hosts. The material in this volume originates from papers presented at the Fourth International Hymenoptera Conference held in Canberra, Australia in early 1999. This material has been extensively rewritten, refereed and edited; culminating in this authoritative and comprehensive collection of review and research papers on the Hymenoptera. The authors include many world-leading researchers in their respective fields,

and this synthesis of their work will be a valuable resource for researchers and students of Hymenoptera, molecular systematics and insect ecology.

uw biology acceptance rate: Hormones, Brain and Behavior Online, 2002-06-18 Hormones, Brain, and Behavior, Second Edition is a comprehensive work discussing the effect of hormones on the brain and, subsequently, behavior. This major reference work has 109 chapters covering a broad range of topics with an extensive discussion of the effects of hormones on insects, fish, amphibians, birds, rodents, and humans. To truly understand all aspects of our behavior, we must take every influence (including the hormonal influences) into consideration. Donald Pfaff and a number of well-qualified editors examine and discuss how we are influenced by hormonal factors, offering insight, and information on the lives of a variety of species. Hormones, Brain, and Behavior offers the reader comprehensive coverage of growing field of research, with a state-of-the-art overview of hormonally-mediated behaviors. This reference provides unique treatment of all major vertebrate and invertebrate model systems with excellent opportunities for relating behavior to molecular genetics. The topics cover an unusual breadth (from molecules to ecophysiology), ranging from basic science to clinical research, making this reference of interest to a broad range of scientists in a variety of fields. Available online exclusively via ScienceDirect. A limited edition print version is also available. Comprehensive coverage of a growing field of research Unique treatment of all major vertebrate and invertebrate model systems with excellent opportunites for relating behavior to molecular genetics Covers an unusual breadth ranging from molecules to ecophysiology, and from basic science to clinical research

uw biology acceptance rate: Methods in Computational Biology Ross Carlson, Herbert Sauro, 2019-07-03 Modern biology is rapidly becoming a study of large sets of data. Understanding these data sets is a major challenge for most life sciences, including the medical, environmental, and bioprocess fields. Computational biology approaches are essential for leveraging this ongoing revolution in omics data. A primary goal of this Special Issue, entitled "Methods in Computational Biology", is the communication of computational biology methods, which can extract biological design principles from complex data sets, described in enough detail to permit the reproduction of the results. This issue integrates interdisciplinary researchers such as biologists, computer scientists, engineers, and mathematicians to advance biological systems analysis. The Special Issue contains the following sections: • Reviews of Computational Methods • Computational Analysis of Biological Dynamics: From Molecular to Cellular to Tissue/Consortia Levels • The Interface of Biotic and Abiotic Processes • Processing of Large Data Sets for Enhanced Analysis • Parameter Optimization and Measurement

uw biology acceptance rate: Ten Sleep Nicholas Belardes, 2025-06-24 Jordan Peele's Nope meets True Grit in Nicholas Belardes's Ten Sleep, a supernatural modern-day western about a trio of young people on a 10-day cattle drive that leads them through a canyon haunted by ancient mysteries and savage beasts who existed long before humankind. A young Mexican American woman detects uncanny creatures stalking her on a cattle drive toward a canyon soaked in blood in an unforgettable novel, brilliantly infusing the modern Western with spine-chilling horror . . . When Greta Molina's old friend Tiller offered her the job, a ten-day cattle drive across the Wyoming prairie from the ranching town of Ten Sleep, it sounded like a well-paid break. Three hundred and twenty cows and calves, two guys her age she's known since college, and a few long days on an ATV will give her time to sort out the mess in her head. The canyon along the trail has a history, sure, but nature has a tendency toward violence. Greta can accept that, even if it makes her insides squirm. What Greta doesn't know is the legacy of murder and rot that runs deep into the rocks of this land. As each night passes on the prairie, the trio faces mounting supernatural dangers: a ghost train of the damned, wild animals walking alongside dead ones—and evidence of a gigantic creature in the skies, one that's supposedly been extinct for eons. And Tiller may be hiding even darker secrets the further they go. Safety is only ten sleeps away, but Greta soon realizes that may be too long for all of them to survive. Nicholas Belardes's Ten Sleep is a fresh portrayal of the American West for fans of Catriona Ward, Victor LaValle and Jordan Peele's Nope, by a rising star in horror.

Related to uw biology acceptance rate

UW (University of Washington) DODD - DD DODDDUniversity of Washington _AAU_____1974__ $\textbf{UW Tacoma} \\ \texttt{_}\\ \texttt{_}\\$ $Tacoma \cite{thm} CS \ master \cite{thm} On \cie{thm} On \cite{thm} On \cite{thm} On \cite{thm} On \cite{thm} On$ DODDODODO W-Madison ________(UW)_______(WU) ______WUSTL_#31 2020_US News________ $\square WUSTL \square #19 \square \square \square \square \square \square UW \square #62 UW \square WUSTL \square \square \square \square \square \square \square \square \square \square$ **UW** (University of Washington) UW Tacoma DODDOOD UW DODDOCSDACMSDOODD DODDOOD UW DODDOCSDACMSDOODDOODDOODDAIDD 000 2023 fall 000 UW pre science 0000000 DIY 0000 c90 000000000**UW-Madison UW** (University of Washington) DODD - DODDDUNIVERSITY of Washington _AAU_____1974__ UW Tacoma $Tacoma \cite{thm} CS master \cite{thm} On \cite{thm} On$

UIUC_UW_______ - _ _ UW__CSE_______CSE 142/143__________________________________

```
000000000UW-Madison
0000000000 (UW)00000000 (WU) 0 00000000WUSTL0#31 20200US News0000000 000000
UW (University of Washington)
_AAU_____1974__
UW Tacoma
Tacoma \cite{thm} CS \cite{thm} master \cite{thm} Occupation \ci
000000000UW-Madison
UW (University of Washington)
_AAU_____1974__
UW Tacoma
Tacoma \cite{thetalor} CS \ master \cite{thetalor} \cite{the
```

```
UW (University of Washington)
 \hbox{ (]} is news \hbox{ (]} \hbox{ (]
_AAU_____1974__
UW Tacoma
Tacoma \cite{thm} CS \cite{thm} master \cite{thm} Occupation \ci
000000000UW-Madison
000000000 (UW)00000000 (WU) 000000000WUSTL0#31 20200US News0000000 00000000
UW (University of Washington)
DODD - DODDDUniversity of Washington
_AAU_____1974_
UW Tacoma
Tacoma \cite{thm} CS \cite{thm} master \cite{thm} Occupation \ci
UIUC_UW_____CS____ - __ UW__CSE______CSE 142/143________________________________
000 2023 fall 000 UW pre science 0000000 DIY 00000 C90
0000000000 (UW)00000000 (WU) 000000000WUSTL0#31 20200US News0000000 00000000
UW (University of Washington)
_AAU_____1974_
UW Tacoma
Tacoma \cite{thetalor} CS \ master \cite{thetalor} \cite{the
```

2023 fallUW pre scienceDIYC9_
$\mathbf{CMU} \square \mathbf{CS} \ \mathbf{PhD} \square \mathbf{UW} \square \mathbf{CS} \ \mathbf{PhD} \square \square$
$\verb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$
$\square uw \square uiuc \square \square \square ?$ - $\square \square$ $\square \square $
$\verb $

Back to Home: $\underline{\text{https://spanish.centerforautism.com}}$